

BENHA UNIVERSITY FACULTY OF ENGINEERING AT SHOUBRA

ECE-322 Electronic Circuits (B)

Lecture #5 Active Filters

Instructor: Dr. Ahmad El-Banna

ور والمنتخب والشروا

BASIC FILTER RESPONSES

anna Ahmad \bigcirc Spring 2015 Lec#5 Cts B, Elec. (

Intro.

- Filters are circuits that are capable of **passing** signals with certain selected **frequencies** while **rejecting** signals with **other** frequencies.
- This property is called **selectivity**.
- Active filters use transistors or op-amps combined with passive RC, RL, or RLC circuits.
- The **passband** of a filter is the range of frequencies that are allowed to pass through the filter with **minimum attenuation** (usually defined as less than of attenuation).
- The critical frequency, (also called the cutoff frequency) defines the end of the passband and is normally specified at the point where the response drops (70.7%) from the passband response.
- Following the passband is a region called the **transition region** that leads into a region called the **stopband**.
- There is **no precise point** between the transition region and the stopband.

Basic Filter Responses

Low-Pass Filter Response

- Actual filter responses depend on the **number of poles**, a term used with filters to describe the **number of RC circuits** contained in the filter.
- The -20 dB/decade **roll-off** rate for the gain of a basic RC filter means that at a frequency of $10 f_c$, the output will be -20dB (10%) of the input.
- This roll-off rate is **not a good filter characteristic** because too much of the unwanted frequencies (beyond the passband) are allowed through the filter.

(a) Comparison of an ideal low-pass filter response (blue area) with actual response. Although not shown on log scale, response extends down to $f_c = 0$. (b) Basic low-pass circuit

5

Basic Filter Responses..

• High-Pass Filter Response

(a) Comparison of an ideal high-pass filter response (blue area) with actual response

Basic Filter Responses...

- The **quality factor** (Q) of a band-pass filter is the ratio of the center frequency to the bandwidth.
- The higher the value of Q, the narrower the bandwidth and the better the selectivity for a given value of f₀.
- Band-pass filters are sometimes classified as narrow-band (Q>10) or wide-band (Q<10).
- The quality factor (Q) can also be expressed in terms of the damping factor (DF) of the filter

Basic Filter Responses....

• Band-Stop Filter Response

also known as notch, band-reject, or band-elimination filter.

FILTER RESPONSE CHARACTERISTICS

9

FILTER RESPONSE CHARACTERISTICS

- Each type of filter response (lowpass, high-pass, band-pass, or bandstop) can be tailored by *circuit component values* to have either a
 - Butterworth,
 - Chebyshev, or
 - Bessel characteristic.
- Each of these characteristics is identified by the shape of the response curve, and each has an advantage in certain applications.

Butterworth Bessel Chebyshev

The Butterworth Characteristic

- The Butterworth characteristic provides a very flat amplitude response in the passband and a roll-off rate of -20 dB/decade/pole.
- The phase response is not linear, and the phase shift (thus, time delay) of signals
 passing through the filter varies nonlinearly with frequency.
- Therefore, a pulse applied to a Butterworth filter will cause overshoots on the output because each frequency component of the pulse's rising and falling edges experiences a different time delay.

anna

FILTER RESPONSE CHARACTERISTICS..

The Chebyshev Characteristic

- Filters with the Chebyshev response characteristic are useful when a rapid roll-off is required because it provides a roll-off rate greater than -20 dB/decade/pole.
- This is a greater rate than that of the Butterworth, so filters can be implemented with the Chebyshev response with fewer poles and less complex circuitry for a given roll-off rate.
- This type of filter response is characterized by overshoot or ripples in the passband (depending on the number of poles) and an even less linear phase response than the Butterworth.

The Bessel Characteristic

- The Bessel response exhibits a linear phase characteristic, meaning that the phase shift increases linearly with frequency.
- The result is almost **no overshoot on the output** with a pulse input.
- It has the **slowest roll-off** rate.

The Damping Factor

- The damping factor (**DF**) of an active filter circuit determines which **response characteristic** the filter exhibits.
- It affects the filter response by **negative feedback action**.
- Any attempted increase or decrease in the output voltage is offset by the **opposing effect** of the negative feedback.
- This **tends to** make the **response** curve **flat** in the passband of the filter if the value for the damping factor is precisely set.

$$DF = 2 - \frac{R_1}{R_2}$$

- The value of the damping factor required to produce a desired response characteristic depends on the order (number of poles) of the filter.
- **Example:** 2^{nd} order \rightarrow DF=1.4

$$\frac{R_1}{R_2} = 2 - DF = 2 - 1.414 = 0.586$$

Values for the Butterworth response

		1ST STAGE			2ND STAGE			3RD STAGE		
ORDER	ROLL-OFF DB/DECADE	POLES	DF	R_{1}/R_{2}	POLES	DF	R_3/R_4	POLES	DF	R_5/R_6
1	-20	1	Optional							
2	-40	2	1.414	0.586						
3	-60	2	1.00	1	1	1.00	1			
4	-80	2	1.848	0.152	2	0.765	1.235			
5	-100	2	1.00	1	2	1.618	0.382	1	0.618	1.382
6	-120	2	1.932	0.068	2	1.414	0.586	2	0.518	1.482

Critical Frequency and Roll-Off Rate

•

)anna

15

Advantages of Op-Amp Active Filters

- Filters that use op-amps as the active element provide several advantages over passive filters (R, L, and C elements only).
 - The op-amp provides **gain**, so the **signal is not attenuated** as it passes through the filter.
 - The high input impedance of the op-amp **prevents excessive loading of the driving source**.
 - The low output impedance of the op-amp prevents the filter from being affected by the load that it is driving.
 - Active filters are also easy to adjust over a wide frequency range without altering the desired response.

The Sallen-Key LPF (2nd Order)

- It is used to provide very high Q factor and passband gain without the use of inductors.
- It is also known as a VCVS (voltagecontrolled voltage source) filter.

$$f_c = \frac{1}{2\pi\sqrt{R_A R_B C_A C_B}}$$

Two-pole low-pass circuit

Cascaded LPF

 A three-pole filter is required to get a third-order low-pass response.

 A four-pole filter is preferred because it uses the same number of op-amps to achieve a faster roll-off.

(b) Fourth-order configuration

كاية الهندسة بشيرا

18

)anna

Ahmad FJ-R

 \bigcirc

S

Spring 201

Elec. Cts B, Lec#5

Janna

Ahmad

In high-pass filters, the roles of the capacitor and resistor are reversed in the RC circuits.

ACTIVE HIGH-PASS FILTERS

19

)anna © Ahmad] Elec. Cts B, Lec#5, Spring 2015

 $\circ V_{out}$

 $\leq R_1$

 $\leq R_2$

Single Pole HPF

 C_B

 $\leq R_B$

 C_A

 $V_{in} \circ$

كايةالهندسة بشيرا

Cascaded HPF

Order = ? roll-off = ? © Ahmad El-B Elec. Cts B, Lec#5, Spring 2015

)anna

)anna

22

Cascaded Low-Pass and High-Pass Filters

Multiple-Feedback Band-Pass Filter

• The center frequency expression is:

$$f_0 = \frac{1}{2\pi C} \sqrt{\frac{R_1 + R_3}{R_1 R_2 R_3}}$$

 A value for the capacitors is chosen and then the three resistor values are calculated using the expressions:

$$R_1 = \frac{Q}{2\pi f_0 C A_0}$$

$$R_2 = \frac{Q}{\pi f_0 C}$$

$$R_3 = \frac{Q}{2\pi f_0 C (2Q^2 - A_0)}$$

• The gain expression

$$A_0 = \frac{R_2}{2R_1}$$

State-Variable Filter (universal active filter)

- It consists of one or more integrators, connected in some feedback configuration.
- It realizes the state-space model with n state variables for an nth order system.
- The instantaneous output voltage of one of the integrators corresponds to one of the state-space model's state variables.
- The **center frequency** is set by the **RC** circuits in both **integrators**.

State-Variable Filter.

- At <u>f < f</u>, the input signal passes through the summing amplifier and integrators and is **fed back 180**° out of phase. Thus, the feedback signal and **input signal** cancel for all frequencies < fc.
- As the **low-pass response of the integrators rolls off**, the feedback signal diminishes, thus **allowing the input to pass** through to the band-pass output.
- <u>Above f_c</u>, the low-pass response disappears, thus preventing the input signal from passing through the integrators.
- As a **result**, the band-pass filter output **peaks sharply at f**_c.

State-Variable Filter...

• Stable **Qs** up to 100 can be obtained with this type of filter.

- The state-variable filter cannot be optimized for low-pass, high-pass, and narrow band-pass performance simultaneously.
- To optimize for a low-pass or a high-pass Butterworth response, DF must equal 1.414. Since Q = 1/DF, a Q of 0.707 will result.
- Such a low Q provides a very wide band-pass response (large BW and poor selectivity).
- For optimization as a narrow band-pass filter, the Q must be set high.

Biquad Filter

Report: Simulate the State Variable & Biquad Filters. EctB_S15_UrName_R02 D.L. : Monday 06-04-2015 @ 11:59 PM

State-Variable Filter	Biquad Filter				
Sum. Amp. \rightarrow Integrator \rightarrow Integrator	Integrator \rightarrow Inv. Amp. \rightarrow Integrator				
very high Q value	very high Q value				
B.W. depends on f _c	B.W. independent on f _c				
Q independent on f _c	Q depends on f _c				
HP, BP & LP outputs	BP & LP outputs				

28

Multiple-Feedback Band-Stop Filter

State-Variable Band-Stop Filter

Janna

Discrete Point Measurement

The **general procedure** is as follows:

- 1. Set the amplitude of the sine wave generator to a desired voltage level.
- 2. **Set the frequency** of the sine wave generator to a value well below the expected critical frequency of the filter under test.
 - For a low-pass filter, set the frequency as near as possible to 0 Hz.
 - For a **band-pass** filter, set the frequency well **below the expected lower** critical frequency.
- 3. **Increase the frequency** in predetermined **steps** sufficient to allow enough data points for an accurate response curve.
- 4. Maintain a constant input voltage amplitude while varying the frequency.
- 5. **Record** the **output voltage** at each value of frequency.

6. After recording a sufficient number of points, **plot a graph** of output voltage versus frequency.

33

Swept Frequency Measuremei

- requires more elaborate test equipment
- but it is much more efficient

(b) Test setup for a filter response using an oscilloscope. The scope is placed in X-Y mode. The sawtooth waveform from the sweep generator drives the X-channel of the oscilloscope.

anna Ahmad LO Spring 201 Lec#5 Cts B, Elec.

- For more details, refer to:
 - Chapter 15, T. Floyd, **Electronic Devices**, 9th edition.
- The lecture is available online at:
 - http://bu.edu.eg/staff/ahmad.elbanna-courses/12135
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>